New study shows possibilities and dangers of nanotechnology

By: 

A tiny change in a tiny particle can mean the difference between treatment and toxicity, federal researchers found in the first observations of its kind.

Researchers at the Los Alamos National Laboratory in New Mexico originally set out to study the interactions of carbon fullerenes – soccer-ball shaped molecules more commonly known as “buckyballs” – and cell membranes, said Rashi Iyer, a toxicologist at Los Alamos and principal research lead on the study, which was recently published in the journal Toxicology and Applied Pharmacology.  As research progressed, she said that she and her  colleagues began to observe an unexpected reaction that could either be dangerous or desirable.Los Alamos National Laboratory toxicologist Jun Gao, a co-author in the study, works in his laboratory. Courtesy of Los Alamos National Laboratory.Los Alamos National Laboratory toxicologist Jun Gao, a co-author in the study, works in his laboratory. Courtesy of Los Alamos National Laboratory.

Researchers found that exposure to a certain type of fullerene known as the “tris” configuration, referring to a certain configuration of molecular branches on the nanoparticle, produced a toxic reaction in human tissue.

Iyer said that cells from skin and lungs were among those studied, since those would be likely points of exposure to nanoparticles. Cells exposed to the tris fullerenes went into a state that could be described as suspended animation, she said.  Cells’ normal life cycle halted, meaning that they stopped growing, dividing and dying.

Typically, this effect would pose a risk to human organs by inhibiting normal development or immune responses.    The same effect could also delay the onset of degenerative diseases such as Alzheimer’s or prevent the spread of cancerous cells, giving doctors more time to treat abnormal cells, said the press release.

Iyer noted that the discovery of the senescence effect highlighted the importance of identifying health risks as nanoscience continues to develop.  Studies like this can “guide material science,” she said, demonstrating, in this case, that application matters when dealing with particles that may have a toxic potential.  In a targeted scenario, this particle could lead to new medical treatments.  If it had been inadvertently employed in a commercial product, there could be a health crisis.

Currently, nanomaterials face few federal regulations. Lynn Bergeson, a Washington, D.C.  lawyer who counsels companies on nanotechnology innovation, said that it is a misconception that there are no regulations – while no laws address nanotechnology alone, many nanomaterials do fall under broader rules such as sections of the Environmental Protection Agency’s Toxic Substances Control Act. “The EPA is doing a ton of work on nanoscale materials,” said Bergeson, and there are several new rules on the horizon.

Iyer said that she thinks that regulations have been slow to appear because agencies “don’t want to press the panic button” on a growing field with the potential to address many day-to-day problems.

“[Nanomaterials] need to be exploited for what they can offer us,” said Iyer, “but we need to be cautious.”

To that end, she said that her future research will entail efforts to broadly classify nanomaterials and assess their risks. With researchers in 40 countries creating new nanoparticles every day, she said that it would be difficult to assess each particle individually.  By using physical and chemical characteristics to classify particles, scientists will be able to better predict responses to particles and the effects of modifying them.

Bergeson said that regulatory agencies face “a steep learning curve” in assessing the risks and benefits of nanotechnology. “The EPA is doing, I think, a very good job in obtaining information,” she said, adding that there is a “steady increase in the sophistication and work devoted by regulatory agencies” to nanomaterials.

Establishing standards, said Iyer, “should be the universal effort” in nanomaterials research.

Topic: 

Add new comment

Refresh Type the characters you see in this picture. Type the characters you see in the picture; if you can't read them, submit the form and a new image will be generated. Not case sensitive.  Switch to audio verification.