Error message

The spam filter installed on this site is currently unavailable. Per site policy, we are unable to accept new submissions until that problem is resolved. Please try resubmitting the form in a couple of minutes.

National clean energy proposals: Part III

By: 

In my past two blogs, I've outlined Google’s Clean Energy 2030 proposal for reducing carbon emissions and increasing renewable energy production in the US, and added my personal comments. Here's a few more...let us know what you think.

  • I like the fuel efficiency standard of 45mpg by 2030, although from a technology standpoint I think it can go a bit higher, considering that Europe has set the same standards for 3 years from now.  Obviously this is a behavior issue though, as Americans like large inefficient cars.  Perhaps that will change in the next 20 years though, where we will find we can eclipse this mark.
  • In relation to the above comment, it is important to recognize that when discussing gasoline versus electric cars, fuel savings is not equivalent to CO2 savings.  While the proposal takes into account the increased electricity demand, the opportunity cost of gasoline cars compared to electric vehicles must include the CO2 released in the production of the electricity used in the vehicle.  Using current figures, I recently wrote a blog in which I calculated that electric vehicles emit 2/3 less CO2 when traveling the same distance as the average internal combustion car.  While it would certainly be reduced even more as coal and gas electricity generation is replaced by renewable resources, this CO2 contribution needs to be included in the personal vehicle numbers that the proposal quotes.
  • Clean Energy 2030 deserves a lot of credit for recognizing the potential of a program like cash for clunkers (they reference this article in their proposal) well before it was readily accepted and implemented.   Accelerated replacement of inefficient vehicles provides immediate carbon emission savings, and establishes a standard for future car generations.  The total fuel and carbon savings from this program will perhaps be the subject of another blog…
  • I agree with the limited role that biofuels are given.  I know I am probably angering a whole community of scientists with that statement, but I am open to debate on the subject.  In my opinion there are three main reasons I do not support biofuels, at the moment.  Firstly, I don’t believe that biofuels are truly renewable.  While they in theory have a zero net carbon cycle, this is only true if the biomass is replanted, re-grown, or re-produced in an equal manner.  But it is not a closed cycle.  The process requires land (for the scale of production required), and land is a limited resource that is used for other products and other means that are just as, if not more important, as outlined in this Science article, which was also covered in The New York Times.  The process also requires extreme amounts of water, which may be a concern in coming ages.  Secondly, the complete energy efficiency of the cycle, depending on the type of biomass, remains relatively low.  Thirdly, there just isn’t enough biomass in the quantities needed in order to significantly impact the energy demand of the world.  Despite that, there are and will be more niche areas where biomass serves as a great solution, especially where the added advantages of having a liquid fuel can be utilized.  Plenty of information on the basics of biofuels can be found here.
  • I am guessing that the intermittency cost of 20$/MWh is not arbitrary, so I would be curious to find out from what source it is taken.  Intermittency is and will be a key issue as more solar and wind generation is added to the grid.  However, there is a possible solution. While I may be accused of being biased because my background is in solid oxide fuel cells (SOFCs), SOFCs offer a unique solution in that they can be run in reverse as electrolysis cells (SOECs).  This dual nature allows for generation of electricity from hydrogen and hydrocarbon fuels, but also storage of electricity in the form of these same fuels.  Hence, they can be used for power leveling where excess electricity is converted to fuel to be used later when demand exceeds production.  SOFCs are also a distributed energy solution, where residential houses, commercial buildings, and utility companies can each have their own fuel storage and electricity generation systems.  The full cycle efficiency of electricity-fuel-electricity of an SOFC/EC is upwards of 70%, which approaches the cycle efficiency of a battery, with the added benefit of having unlimited energy storage.  While SOFCs are currently not cost effective, ongoing research can certainly meet efficiency and cost goals by 2030, which should greatly reduce the 20$/MWh intermittency value.
  • I agree with the doubts regarding the viability of carbon capture as a solution to CO2 emissions.  This is a very expensive technology in today’s form, and has not been proven effective in large scale.  Additionally, the problem remains as to where and how one would be able to store all this carbon and CO2.  I reference again Nathan Lewis’ talk as a great outline for the concerns regarding this technology.
  • It should not go unmentioned that there are other cost savings to creating a renewable energy economy that are less tangible, yet just as important.  Among these are reduced defense spending to fund wars as a result of needed oil imports (“petrodictatorships”, as coined by Thomas Friedman in “Hot, Flat, and Crowded”), cleaner environments, healthier air, and hopefully, less costs resulting from reduced climate change.
  • I am a strong believer that any and all technologies that offer viable solutions to our current carbon emissions problems should be implemented in one form or another.  While it is my opinion that solar power will be the sole solution to the world’s energy problems in the distant future, a suite of near-term solutions is the most practical and cost-effective means for achieving this goal.  With that said, it is important to recognize that efficiency is not a solution in and of itself to our energy problems.  While efficiency measures can produce incredible cost and carbon savings, as recently outlined by a team at McKinsey, maintaining electricity demand at current levels over the next 20 years, the goal of Clean Energy 2030, would be just as detrimental without significant development of renewable energy sources.  Efficiency measures with today’s energy portfolio only delay the problem.  But efficiency measures enhance the solution when renewable sources are implemented.
  • Lastly, the financial model is very sensitive to the price of gasoline, as witnessed by the change that occurred when the value was reduced from $4 to $3.  It would be nice to see how sensitive the model is to gasoline prices in general, as well as any other variables that are subject to change.  With that in mind, I think the best way to present the data is in a “best case - worst case” scenario, where a range of possible outcomes is given.  Or at least it could be determined at what price of gasoline the plan breaks even.  This would give the reader some insight into how robust the proposal is with respect to natural variables.

In conclusion, I think that Clean Energy 2030 is a great source for understanding the possible solutions for reducing our carbon emissions and establishing a renewable energy portfolio.  Whether you agree with the ideas and the financials or not, I hope that we can all agree that a solution in general is needed to curb our nation’s dependence on fossil fuels.

Topic: 

Tags: 

Comments

I find it remarkable that Europe can be so far ahead of us on passenger vehicle fuel economy. What factors account for the difference?

I think you have to remember, that in Europe there is a large percentage of people who use Vehicles only for grocery or entertainment trips. The rest of the time its walking or bike riding. In North America you will never see that. Japan is another country but a problem comes down to the public transportation.

I am all for clean energy. The faster we get the ball rolling, the better off we should be.

My brother spent about a year living in Europe. He was given a two year-old company car. It was a turbo diesel that averaged about 53 MGP mixed highway and local driving! This was a true four-seater and not a compact vehicle. I am very glad to see that you can now find similar vehicles here, but wonder why it took so long.

Add new comment

Filtered HTML

  • Web page addresses and e-mail addresses turn into links automatically.
  • Allowed HTML tags: <a> <em> <strong> <cite> <blockquote> <code> <ul> <ol> <li> <dl> <dt> <dd> <p> <div> <br> <sup> <sub>
  • Lines and paragraphs break automatically.

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.